合作客户/
拜耳公司 |
同济大学 |
联合大学 |
美国保洁 |
美国强生 |
瑞士罗氏 |
相关新闻Info
-
> 桐油基衍生物钠盐的表面张力、CMC值测定、乳液稳定性、固化膜性能测试(一)
> 生物表面活性剂产生菌的筛选及对PAHs污染环境的修复效果研究(三)
> 探讨一级相变过程中气泡和液滴临界半径的变化规律、演化方向(二)
> 2022年中国表面活性剂行业全景产业链、重点企业经营情况及发展趋势
> 可视化实验方法研究电场作用下液滴撞击表面的动态行为(二)
> 嗜热链球菌发酵乳对全蛋液起泡性、pH、黏度、表面张力的影响(三)
> 基于LB膜技术制备二氧化硅二维光子晶体薄膜的方法
> 基于天然植物油的酰胺胺氧化合物的合成表征及表面性质——实验程序
> 泡沫洗手液的泡沫是如何产生的?泡泡的产生离不开表面活性剂
> 乳化降黏驱油剂在孔隙尺度的致效机理
推荐新闻Info
-
> 界面张力主导:残余气饱和度的深部咸水层CO2封存潜力评估(三)
> 界面张力主导:残余气饱和度的深部咸水层CO2封存潜力评估(二)
> 界面张力主导:残余气饱和度的深部咸水层CO2封存潜力评估(一)
> 两类农用防雾涂层表面张力的深度计算与比较分析(二)
> 两类农用防雾涂层表面张力的深度计算与比较分析(一)
> 药液表面张力、喷雾方法对雾滴在水稻植株上沉积的影响(三)
> 药液表面张力、喷雾方法对雾滴在水稻植株上沉积的影响(二)
> 药液表面张力、喷雾方法对雾滴在水稻植株上沉积的影响(一)
> 烷基二苯醚/烷基苯混合磺酸盐静态表面张力、金属腐蚀性及净洗力测定(二)
> 烷基二苯醚/烷基苯混合磺酸盐静态表面张力、金属腐蚀性及净洗力测定(一)
纳米熔盐形成机理、表面张力测定及影响因素研究(二)
来源:储能材料与器件 浏览 540 次 发布时间:2025-09-09
2结果与讨论
为了减少熔融盐内部自然对流对测量结果的影响,密度及表面张力实验均在降温的过程中进行测量。熔融盐冷却速率小于2K/min。
2.1实验台精度验证
2.1.1密度实验台精度验证
采用阿基米德法测量纳米熔盐液体密度时,采用已知体积的316L不锈钢重锤作为密度探头,在测量纳米熔盐的密度之前,先用已知密度的液体对密度探头进行标定,可由式(3)对密度探头的体积进行计算。
本实验采用去离子水作为已知液体,由式(3)得到重锤的体积为2.4388~cm^3。对重锤体积进行标定后,通过对KNO3、NaNO3的密度进行测量,验证实验台精度,两种熔融盐的密度测量结果与文献中的密度进行比较。
密度实验台精度验证如图2所示。密度实验台测得NaNO_3、KNO_3的密度与参考文献上给出的密度值变化趋于一致,并且最大偏差值低于0.12%,考虑到文献值存在的误差,本实验台的密度测量精度满足实验要求。
密度实验台精度验证如图2所示。
2.1.2表面张力实验台精度验证
采用拉筒法测量纳米熔盐液体表面张力前,可通过测量已知液体的表面张力,通过式(4)对表面张力实验台的仪器系数进行标定。
本实验先对NaNO3的表面张力进行测量,得到仪器系数C。由式(4)可知,仪器系数C与温度无关,对NaNO3在5个温度工况点下的表面张力进行测量,并且每个温度工况点采集3次测实验数据,通过最终的计算得到本实验台的仪器系数C=0.00053。对KNO和solar salt的表面张力进行测量后,与文献值进行对比,如图3所示。
图3表明本实验台对熔融盐的表面张力测量结果与文献值随温度变化的趋势趋于一致,最大偏差值低于4.0%,考虑到文献值存在的误差,本实验台的表面张力测量精度满足实验要求。
图3表明本实验台对熔融盐的表面张力测量结果与文献值随温度变化的趋势趋于一致。
2.2纳米熔盐密度分析
研究表明,在solar salt中加入SiO_2纳米颗粒后,熔点会有一定程度的下降,分解温度会有一定程度的提高。并且solar salt的熔点为218.2℃,所以当熔盐加热到250℃时,已经完全熔化;当熔盐温度超过600℃时,熔盐会开始分解。温度较高和温度较低都会对实验测量的数据产生影响,造成较大的实验误差。因此基盐及纳米熔盐密度实验数据测定范围为260~500℃。
利用阿基米德法对基盐及5种加入30 nm SiO2纳米颗粒的纳米熔盐的密度进行测量,每隔10℃进行一次测量,对得到的实验数据进行整理和分析,拟合公式以及拟合系数见表2。样品的密度随温度变化如图4所示。
实验发现,在温度测量范围内,基盐的密度在1.7720~1.9389 g/cm3,密度随温度的升高呈直线下降趋势。1#纳米熔盐的密度在1.7722~1.9405 g/cm3,对数据进行拟合后,拟合系数在0.9994以上,拟合程度较好。2#纳米熔盐的密度在1.7720~1.9356 g/cm3,密度随温度变化的趋势和基盐及一般熔盐密度的变化趋势保持一致,均随温度的升高呈下降趋势。3#和4#纳米熔盐的密度在1.7721~1.9404 g/cm3和1.7749~1.9352 g/cm3之间,拟合系数都在0.9995以上,其中4#纳米熔盐的拟合系数最大,拟合程度最好。5#纳米熔盐的密度在1.7758~1.9384 g/cm3之间,随温度升高呈下降趋势。
样品的密度随温度变化如图4所示。
如图4所示,基盐及纳米熔盐的密度均随温度的升高呈直线下降趋势,且5种纳米熔盐的密度与基盐的密度基本保持一致。如图5所示,在不同温度工况点下,5种纳米熔盐的密度和基盐的密度均处在同一水平线上,即同一温度工况点下,纳米熔盐和基盐的密度保持一致。由于SiO2纳米颗粒的密度为2.20g/cm3,与solar salt的密度相差不大,且在solar salt中加入的SiO2纳米颗粒较少,因此SiO2纳米颗粒对solar salt的密度影响可忽略不计。
在不同温度工况点下,5种纳米熔盐的密度和基盐的密度均处在同一水平线上。
根据混合物密度计算公式对纳米熔盐的密度进行计算后,与实验测量得到的密度进行对比,如图6所示。图6中,1#纳米熔盐密度的测量值与计算值的最大偏差与最小偏差分别为0.104%和0.008%;2#纳米熔盐密度的测量值与计算值的最大偏差为0.327%,最小偏差为0.074%;3#纳米熔盐密度的测量值与计算值的最大偏差为0.350%,最小偏差为0.007%;4#纳米熔盐密度的测量值与计算值的最大偏差为0.291%,最小偏差为0.007%;5#纳米熔盐密度的测量值与计算值的最大偏差为0.302%,最小偏差为0.030%。对比后发现,采用阿基米德法测量的密度值与采用混合物密度计算公式计算的密度值相差较小,可认为在solar salt中加入SiO2纳米颗粒后,熔融盐的密度不会发生改变。
根据混合物密度计算公式对纳米熔盐的密度进行计算后,与实验测量得到的密度进行对比。
文献中提出,在熔融盐中加入SiO2纳米颗粒后,由于分子间作用力和纳米熔盐配制过程中的搅拌作用,熔融盐和纳米颗粒在熔盐体系中会形成一种纳米云核。纳米云核中纳米颗粒被大量的熔融盐包裹,此时SiO2纳米颗粒的密度对纳米云核的密度影响可以忽略不计,纳米云核的密度始终与基盐的密度保持一致。





